Development of a macromolecular diffusion pathway in the lens.
نویسندگان
چکیده
The mammalian lens consists of an aged core of quiescent cells enveloped by a layer of synthetically active cells. Abundant gap junctions within and between these cell populations ensure that the lens functions as an electrical syncytium and facilitates the exchange of small molecules between surface and core cells. In the present study, we utilized an in vivo mouse model to characterize the properties of an additional pathway, permeable to macromolecules, which co-exists with gap-junction-mediated communication in the lens core. The TgN(GFPU)5Nagy strain of mice carries a green fluorescent protein (GFP) transgene. In the lenses of hemizyous animals, GFP was expressed in a variegated fashion, allowing diffusion of GFP to be visualized directly. Early in development, GFP expression in scattered fiber cells resulted in a checkerboard fluorescence pattern in the lens. However, at E15 and later, the centrally located fiber cells became uniformly fluorescent. In the adult lens, a superficial layer of cells, approximately 100 microm thick, retained the original mosaic fluorescence pattern, but the remainder, and majority, of the tissue was uniformly fluorescent. We reasoned that at the border between the two distinct labeling patterns, a macromolecule-permeable intercellular pathway was established. To test this hypothesis, we microinjected 10 kDa fluorescent dextran into individual fiber cells and followed its diffusion by time-lapse microscopy. Injections at depths of >100 microm resulted in intercellular diffusion of dextran from injected cells. By contrast, when injections were made into superficial fiber cells, the injected cell invariably retained the dextran. Together, these data suggest that, in addition to being coupled by gap junctions, cells in the lens core are interconnected by a macromolecule-permeable pathway. At all ages examined, a significant proportion of the nucleated fiber cell population of the lens was located within this region of the lens.
منابع مشابه
Evalauation of Laminin Expression during Mouse Lens Development
Introduction: Among the components of the extracellular matrix (ECM) and basement membrane (BM), laminitis heterotrimeric glycoprotein (laminin) and collagen type IV are the most important. In a previous study we have examined the role of collagen type IV in the developing lens capsule. The present study aims to determine the appearance and distribution of laminin in the BM and ECM of lenses ...
متن کاملOral Morphine Consumption Reduces Lens Development in Rat Embryos
Introduction: Consumption of morphine, during pregnancy, in addition to inducing defects in the mother’s nervous system function, caused defects or delays in the formation and evolution of embryonic visual system. In the present study, changes in lens development were assessed in embryos exposed to morphine in utero. Methods: Female Wistar rats (250-300 g) were mated with male rats and pregnanc...
متن کاملComparison of optic lens proteins among animals at different stages of development
The purpose of this investigation was to study and compare the electrophoretic patterns of optic lensproteins of different species of domestic animals at pre- and post-natal ages. Optic lenses were removed from the embryo or adult sheep, cattle, goat, camel and chicken at the slaughter-house then homogenized and subjected to sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). I...
متن کاملDiscovery and development of metallocene-based polyolefins with special properties
Beside Ziegler-Natta and Phillips catalysts the development of methylaluminoxane (MAO) as cocatalyst in combination with metallocenes or other transition metal complexes for the polymerization of olefins has widely increased the possibilities in controlling the polymer composition, polymer structure, tacticity and special properties with high precision. These catalysts allow the synthesis of is...
متن کاملThe Effect of Silybum marianum (L.) Gaertn. Seed Extract (Silymarin) on Galactose Induced Cataract Formation in Rats
Background: Increased oxygen free radical and reduced glutathione level in the eye lens are important risk factor for cataract formation. The antioxidative property and increasing cellular and extra cellular glutathione level have been reported by several herbal medicines including silymarin. Objective: In present interventional study Silybum marianum L. seed extract (silymarin) was tested a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 20 شماره
صفحات -
تاریخ انتشار 2003